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ABSTRACT 

A detached shock problem for a symmetric curved convex cylindrical body moving 
parallel to its plane of symmetry was solved by using a third-order accurate Richtmyer 
form of the Lax-Wendroff conservation equations. One innovation is an easy to use 
“artificial viscosity” term which preserves the high order of accuracy of the calculation 
while removing the nonlinear instabilities which otherwise appear in the shock region and 
near boundaries. Another innovation is a simple transformation of Cartesian space 
which changes the curved body into a straight line, thus reducing the large number of 
special points and irregularly shaped mesh regions which would otherwise appear in the 
difference method calculation. Such transformations are shown to preserve the conserva- 
tion property of the system of differential equations. Other aspects of the third-order 
artificial viscosity term and the transformation are discussed. The results of a numerical 
calculation on a CDC 6600 computer are compared with known results. 

I. I~TR00ucT10N 

Consider a smooth plane-symmetric convex cylindrical body moving parallel 
to its axis of symmetry with constant supersonic speed through a perfect com- 
pressible gas. A steady state consists of a detached shock at some distance from 
the body which has a shape that depends on the shape of the body and its speed. 
There is a region of flow behind the shock and in front of the body in which the 
flow is subsonic, and a region behind the shock in which the flow is supersonic, 
these regions being separated by the so-called sonic line. The problem which is 
considered here is to determine the position of the shock near the sonic region 
and the flow in the sonic region for a specific case in which the steady-state con- 
figuration looks like Fig. 1. 

’ The work presented in this paper was supported by the AEC Computing and Applied Mathe- 
matics Center, Courant Institute of Mathematical Sciences, New York University, under Contract 
AT(30-l)-1480 with the U.S. Atomic Energy Commission. 
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FIG. 1. Steady state configuration. 

In Burstein’s work [5] a time-dependent flow which tends to the steady state is 
calculated with conservation equations, and the shock is determined as a region 
of rapid variation of the flow quantities; we proceed similarly. The new features 
here compared with [5] are: 

(1) A simpler artificial viscosity term is used. 

(2) Since the boundary of the body is a curve instead of a straight line, 
a transformation of the Cartesian plane is effected which maps the 
curved body onto a straight vertical line, and the finite difference 
calculation is carried out in this nonphysical coordinate system. 
The conservation laws are rewritten as conservation laws in this new 
system. 

(3) To continue calculating near the upper boundary of the mesh, flow 
quantities are extrapolated from the interior points to the boundary. 

Finite difference methods of third-order accuracy similar to those in [5] were 
employed in the computation except near the body and the artificial upper boundary 
where the methods used were only second order to keep the computation from 
becoming unstable. The stability and accuracy of the computation will be discussed 
in the following sections on the differential equations and in later sections on the 
numerical results. 

II. DIFFERENTIAL EQUATIONS 

Fundamental in this approach to solving the detached shock problem is the use 
of the conservation form [2, 31 of the equations of time-dependent, two-dimensional 
compressible fluid dynamics: 

g+zp+Ep~, (1) 



156 LAPIDUS 

where 

in which 

X, y are Cartesian coordinates 
t is time 

P is mass per unit volume 
U is the horizontal velocity component 
V is the vertical velocity component 
m isp.24 
n isp*v 

i 
is total energy per unit volume 
is given by e = p/(y - 1) + p(z2 + v3/2, and 

Y is the ratio of specific heats (we are assuming a gamma-law gas). 

In this approach the shock is not a boundary but simply an interior region of 
rapid variation of the flow quantities. In fact the reason for using the conservation 
form of the equations is that it includes the shock conditions as well as the differen- 
tial equations of motion of the gas. Later we will use a transformation of space. 

The following theorem shows that if a nonsingular transformation of space is 
made, then any conservation law expressed in the old coordinates can always be 
rewritten as a conservation law in the new coordinates. 

-OREM 1. Under nonsingular space transformations, conservation laws are 
transformed into conservation laws. 

Proof: A conservation law is expressed by 

1 
G 

U, dx + j- F, dS = 0, 
ac 

where F, = (F, n), in which F is a vector (Fl ,..., F,) and n = (nl ,..., &) is the 
normal to the surface G. 

After a change invariables from x1 ,..., x, to 5, ,..., fm we want to show that (2) 
changes into an equation of the same form in the new coordinates. Let 

J = %Q ,..., &WX& ,..., &A 
and let J, be the Jacobian for the surface element of (2). Let M be a matrix which 
transforms the direction of the normal v to the surface in (5, ,..., &) space into 
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the direction n of the associated normal to the surface in (x1 ,..., x,,J space. The 
integral (2) becomes 

where overbars denote the quantities in the new coordinate system. Now 

(p - n) J, = (Js SF, n) = (J& A4 - v) = (W-J& v), 

where MT means transpose of M. This shows that (P - n) J, is the component of 
a vector normal to 3 and therefore (2) and (3) are of the same form. Q.E.D. 

A practical way to determine the components of the flux is given by the following. 
Use the differential form (1) of the conservation laws. By using the chain rule 
and multiplying (1) by J we get 

m a& at, (Jo), + (,; ,c, aglc a,) J = 0. (34 

According to the theorem, the spatial part of (3a) is in conservation form; it is 
not hard to show that it is 

<JQt + 5 ( f Jpj $$), = 0. 
k=l j=l k 

(3b) 

It is amusing that the validity of (3b) follows from the conceptual argument 
presented. Of course, (3b) can also be verified by a computation. We note that (3a) 
can be written as 

(Jo)t + F a(x, 2”‘) ;T;:E’,‘;;” ,***P %d .  

j=l m 

But according to a theorem of advanced calculus 

is of the form C (p& [I 11. 
Specifically, the transformation which we used was 

51 = MY) & = Y, (4) 

in which h’(y) exist and h(y) # 0. This changes the fundamental Eq. (1) into 

M&z) Ult + Lf - mi) * 51&lr, + w$* = 0, (5) 
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and maps the curve x = h(y) into the line [, = 1. In this problem the curve 
x = h(y) is the boundary of the body. 

Such a transformation of the space of independent variables is employed as 
a means of simplifying computation near the body. It is obvious from Theorem 1 
[Eq. (3b)] that the transformation does not affect the existence of the shock or its 
position. 

In summary, we have shown that the conservation properties of the system are 
preserved under the transformation and that the essential properties of the shock 
are also preserved under the transformation. It is also obvious that if the function h 
satisfies the symmetry property h(y) = /z--y), then the symmetry of the solution 
to the transformed system is also preserved. 

III. GEOMETRY 

The exterior of the obstacle in which the flow takes place is unbounded. Since 
only a finite number of lattice points can be employed in any actual computation, 
the neighborhood of infinity has to be dealt with in some summary fashion. In 
this work, we resort to the simple and crude expedient of confining the calculation 
to a finite region of the flow field which contains the whole sonic regime. 

In this approach the region is bounded from above by an artificial boundary 
line on which boundary conditions have to be imposed which approximate well 
the state of affairs along this line in the true solution. At any rate, the error incurred 
by imposing artificial boundary conditions should be comparable to discretization 
errors. 

The remaining geometrical inconvenience is the incommensurability of a curved 
body with a rectangular mesh. We solved that problem by mapping the irregularly 
shaped cut-out configuration onto a rectangular region by a transformation which 
took the boundary of the body into the right side of a rectangle. The mapping 
which we used was 

f1 = MY) & = Y, 

where x = h(y) is the function which traces out the boundary of the body and is 
assumed to be continuously differentiable, symmetric in y, and nonvanishing. 
Then the Jacobian of the transformation is also nonvanishing. 

Choose the coordinates so that the left boundary of Fig. 2 is the line x = 0; 
then its image is the line [I = 0. The lines y = 0 and y = .2 are transformed into 
.$:, = 0 and tZ = .2, while the curve x = h(y) is transformed into the line e, = 1. 
Figure 3 illustrates the new configuration in which the three previously straight 
boundaries remain so while the curved body is transformed into a line. 
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ARTIFICIAL BOUNDARY 

BOUNDARY 
OF BODY 

\ 
LINE OF SYMMETRY’ 

FIG. 2. Finite region containing subsonic region. 

NATURAL BOUNO’ARY OF 
SYMMETRY 

FIG. 3. The finite region after transformation. 

This transformation also saves some computer space because the region behind 
the body, the shaded space in Fig. 2, has been eliminated. 

The mesh which was chosen for the machine computation is a 79 x 20 rectan- 
gular grid projected onto that rectangular portion of [,f, space given by 
[0, l] x [0, y,,,]. It is the set of points (jAfl , kde,) withj = 0 ,..., 78; k = 0 ,..., 19; 
and A.f, = l/78, Of, = ymax/19. The body is denoted by the right-sided boundary 
of the mesh since the boundary of the body is transformed into the line e1 = 1. 
The shock is not introduced as an explicit boundary but is determined as the locus 
of the most rapid change in the values of appropriate flow quantities. 

In summary, a region of interest is cut from the plane and then transformed 
into a rectangle. The rectangular region is then represented as a rectangular mesh 
which can be used in a machine computation. 

IV. DIFFERENCE EQUATIONS 

In this Section, a difference scheme for the fundamental Eq. (1) which is similar 
to that in [2] is described and is shown to be consistent and to have truncation 
error O(A8) in the smooth part of the flow which is far from shocks, body, or other 
boundaries. We hoped that no special methods would have to be used at the shock 
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except to use the two-step scheme and that the location of the shock could be 
determined by sharp variations in some of the flow quantities such as density, 
entropy, or pressure. The main reason for this is that the two-step scheme is itself 
conservative as shown by Lax and Wendroff in [3]. That is, solutions U of the 
two-step equations satisfy a discrete analogue of the integral relation 

ISI 
[w,U + wnF( U) + w,G( U)] dx dy dt = 0, (6) 

where w(x, y, t) is a differentiable function of compact support. Such difference 
schemes are conjectured to satisfy the entropy condition. The first step of the 
two-step scheme is: 

- & (Fj”,, k+t - F;k+f) - & (Gi”,, k+l - Gi”,t k). 

The second step of the scheme is: 

u;++’ = uj”, - $ (RF!, - F$*lc> - g (C;k=t, - C$$), 

in which 

u; = 

and 

p:k 

m:k 

“yk 

1 

7 FjE = 

(7a) 

0) 

(74 

This is a nine-point scheme in the sense that only nine points of the mesh at 
time n * d t are needed to obtain numerical values at a point at time (n + 1) At. 
However, four additional points (A, B, C, D of Fig. 4) are used for the computation 
of intermediate values. This scheme can be used only for points which have all 
eight neighbors. 



DETACHED SHOCK 161 

(j- 

FIG. 4. The basic cell. 

Next we want to prove consistency for this scheme [Eq. (7)] and also that the 
discretization error is O(A3). 

Let the truncation error at a point be defined as the difference between a computed 
solution and the true solution having the same initial data. This is also called 
discretization error. 

THEOREM 2. The scheme described by formula (7) is consistent with the fun- 
damental Eq. (1) and has a truncation error which is O(A3) in the smooth part of 
the flow. 

Proof. Define the operators N(U) and Nd( U) by the equations 

N(U)= ut+Fz+G,, 
and 

In order to prove the consistency of the operators N and NA it will be shown that 

liz 1 N”+‘(U) - NJ++(U)1 = 0 

for arbitrary smooth functions U. First we assume that 

and 

<m* - Gj”:f,)/Ay = G,(Uj”,++) + o(A), W) 

in which quantities on the left are evaluated by the difference scheme and the 
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quantities on the right are evaluated by the assumed known function U. Then 
we have 

j N”+“U - Nd”+“U j 

= 1 ut”+l-- Up+*+ O(A)1 = I O(A)1 

which goes to 0 as A --t 0. 
Now we still have to prove (Sa) and (8b). The proof is complicated by the fact 

that the approximations to the derivatives in the difference scheme have an inter- 
mediate step. Only the proof of (8a) follows. The proof of (8b) would follow 
similar lines. To make the proof a little clearer, the function values which are 
computed from the difference scheme are denoted by Vs. Then 

&yk = [F(K?+&+~) + Wi",'a-a)lP (74 

FCVCi’k++) = p(ujZ 5 uj”,,. k 7 Ujnk+l 2 Uj”,, k+l), (9) 

where P is a very smooth function of U$ , U& k ,... . We are assuming that U 
is a smooth function of x, y, and t, so 

W”;:t k+& = Wx, AL.) 

and 

where P is a smooth function of Ax and Ay (10) 

P(Ax, Ay) = p(0, 0) + p,(O, 0) Ax + P,(O, 0) AY + p,,(O, 0) A< 

+ P&J 0) Ax Ay + P,,(O, 0) A< + W3>. (11) 

Then by (7d) and (11) we obtain 

ptt 
3tf k - Fc+++k F( v,“,+,“-lc, +) + F( v::&c- ,) 

zzz 

Ax 2Ax 

F( V;t++k+t) + F( Cf-+&- b> 
2Ax 

= ~P,(o, 0) + O(Ax2). (12) 

Next, we will show that 2P,(O, 0) = F=(x, y, t) + O(At), which will finish the 
proof of consistency. From (9) and (7a) we obtain 

P@x, AY) = FNW(x, Y, t> + W + Ax, Y, t> + Uk Y + AY, t> 

+ u(x + Ax, Y + AY, 01 - @CW[Ii(W + Ax, Y, t>) 
- F(U(x, Y, O)l - AQAY . [G(W, Y + 4, t)) - ‘3% Y, O)l>. (13) 
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Then by differentiating (13) with respect to Ax we get 

p1w-G 0) 

= Fc, . { U,/2 - At/2Ax * (FuU, - [F(U(x + Ax, y, t)) - F(u(x, y, t>)l/h)I, (14) 

and for Ax + 0 

P,(O, 0) = Fu . [U,/2 - F,, At/41 = F*(x) y, t)/2 + O(At). 

This completes the proof of consistency. 
Now we will show that the discretization error in the smooth part of the flow 

is 0(A3). Let the solution of the differential equation be U(x, y, t) and let the 
result of calculating the approximation to the solution at time t + At from values 
of the solution at time t be denoted by Vj”+‘. We want to show 

u(x, y, t + At) - V;++l= O(A3). (15) 

From the differential equation we find that 

W, Y, t + At> 

= WC, y, t) - AtP’&, Y, t + A@) + G&c, Y, t + At/z>1 + W3), (16) 

and from the difference scheme 

v2+’ = U(x, y, t) - 2 (ly?‘k - iy&) - g (CT;:& - Gjn&>, (17) 

where P and e are given by Eq. (7d). From (17) it is clear that Eq. (15) will be 
satisfied if 

@%+AC - &+&)/Ax = F&c, y, t + At/2) + o(A2), (18) 

and similarly for the term in G(V). To prove this, define P(Ax, Ay) so that 

W,“,‘,1 k++) = Wx, AY) 

Lw,y,t> + W+Ax,y,t) + ww+Ay,t> + wx+~x,y+4,W ’ 
At FC+Ax,y,t) + FC’(x+Ax,y+Ay,t) F(v,t) + E;(x,y+Ay,t) 

=F -z [ 
- 

2 2 II 
At G(x,y+&t) + G(x+Ax,y+A.w) G(x,y,t) + W+Ax,y,t) -- 

2Ay [ 
- 

2 2 1: 

(19) 
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From (19) it is clear that the equations 

F( VF++K+f) = P(-Ax, dy); F(V&+&-*) = P(dx, -Ay); 

F(Vj!$-t) = P(-Ax, --dy) (20) 

hold. If we assume that U(x, y, t) is sufficiently smooth, we can expand P as 

wx, AY) = P@, 0) + PI@, 0) Ax + P,(O, 0) AY 
+ PdO, 0) W2 + Pd, 0) Ax AY 
+ P,,(o, 0) W/2 + W3). (21) 

From (20) and (21) it then follows that 

[F( v~?$+~) + ~(v,“,‘ka,-,)/2Ax - WE-&+,) + W’j”_+3,-+PW 
= 2P,(O, 0) + 0(A2). (22) 

We will now show that 

P,(O, 0) = F&C, y, t + A@)/2 + W2), (23) 

and then (22) implies (18). That is, it is sufficient to show (23) in order to show 
that the discretization error is 0(A3). 

To show (23) we differentiate (19) with respect to Ax and obtain 

Pdo, 0) = ~~,MWx, Y, t> - At/2 @‘a + G)I 
Ay+O 

- U&9 Y, o/2 - & I [FAX + Ax, Y, 01 

At 
+ 2Ax II 

F(x + Ax, Y, 0 - F(x, Y, t> 
AX I 

AtG --oy. 
2 2 I 

Then using the hypothesis that U(x, y, t) is a solution to the fundamental 
equation, we get 

P,(o, 0) = FdW, Y, t + W)l - W-J&, Y, t> + W(UJ,I + W3 
= h,[u(x, y, t + At/2)1/2 . uz(x, Y, t + 42) + W3 
= F&v, y, t + At/W2 + W2). Q.E.D. 

We have now proved that this nine-point difference scheme is consistent with 
the fundamental Eq. (1) and has truncation error O(A3) in the interior parts of 
the mesh which are not in the shock region. The left boundary has constant 
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values and those at the axis of symmetry are computed by reflection. We still have 
to describe the difference schemes which are applied at the two nontrivial bound- 
aries: the body and the upper artificial boundary. 

At the upper boundary the flow quantities were evaluated by linear extrapolation 
as follows: 

u,“,+’ = 2 ujy--l - ujEy&2 . (24) 

If the Mach cone at every point of the upper boundary were to leave the 
rectangular region of calculation, the errors introduced by extrapolation (24) 
would hopefully not affect the accuracy of the computation. While the Mach 
cones do not leave the region, the curves which are the envelopes of Mach cones 
starting at the artificial boundary end at points on the body which are still in the 
supersonic region. The numerical experiments show that errors which are 
introduced at the upper boundary affect the subsonic region only slightly. The 
linear extrapolation (24) is in a 45” degree direction which was roughly the same 
as that of the nearby characteristics. Scheme (24) was unstable at the early stages 
of calculation and therefore was replaced by (25) where the factor r was only 
gradually built up to 1. 

Uz++l= Ujn-:lkvl + r(Ujn_:lleel - UJ!IIkm2), 

in which r has the following values according to the number of cycles: 

(25) 

r No. cycles 

.5 < 100 and > 0 

.6 < 200 and > 99 

.7 < 300 and > 199 

.8 < 400 and > 299 

.9 < 500 and > 399 
1.0 < co and > 499 

The top point of the body is also treated in this ad hoc fashion of a point on the 
upper boundary, but the other points of the body are treated in a manner which 
is very much in the spirit of the conservation law approach. To explain the scheme 
used at the body we will refer to Fig. 5. 

The flow quantities are assumed to be known at the points labelled 1,2,3,4, 5, 
and 6 at time t. The problem is to obtain values of the flow quantities for the point 
labelled 1 at time c + dt. 

We think of the flow quantities at point 1 as being affected only by the fluxes F 
and G across the dotted lines. To obtain good estimates of F and G across those 
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The same formulas with the appropriate changes in subscripts (referring to 
points in the figure) are used to obtain intermediate values at the points num- 
bered 9 and 10. At the point numbered 1 the difference formula is: 

un+l = uln - 2; [(F;+“+ F;+“)/2 - (F,n+*+ F;b’3/2] * T,(y) 1 

- T,(x, Y> ($) N'S+* + G+*)/2 - (G;‘) + G$*)/2] 

- ( > + KG + GoW - (G + GM (27) 

This difference scheme is consistent but has an error of second order rather 
than third order as at ordinary points. 

The physical boundary condition is that the flow should be parallel to the wall 
at body points. This was not used so far; we impose it now by replacing the 
momentum vector calculated at boundary points by one which has the same 
magnitude and the right direction. Denoting by m’ and n’ the new momenta, 
we have 

0 = [(mn+1)2 + (nn+l)2]l12 

~77 + m’ *+l - WE + n’ +l, 
(28) 

where (5,~) are the components of the normal to the body at the point. 
At the nose of the body, the symmetry of the configuration is used to reduce 

the point to an ordinary point of the body. This is the same procedure used at 
other points of the axis of symmetry, i.e., the point is reduced to a known type by 
continuing the fiow so that the point gets its full complement of neighbors. 

We have now explained the difference method used in the mesh and at boundaries 
and also discussed the consistency and truncation error of the equations. The 
transformed equations were used in the conservation form as well as in the 
(analytically) equivalent form: 

U, + F, . h-l(y) - x * G, * h’(y) . h-l(y) + G, = 0. (29) 

The results indicate that (5) gives much better accuracy for these equations 
than (29). 

V. STABILITY: SIMPLIFIED LAX-WENDROFF ARTIFICIAL VISCOSITY 

The major difficulty in this problem was maintaining numerical stability. At 
various times instabilities appeared near the body, near the shock, and at the upper 

58112/2-6 
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boundary. To counteract this instability we introduced a new type of stabilizing 
transformation which consisted of replacing the flow quantities Un+l calculated 
in the last section by new ones, U ‘n+l, obtained by smoothing first in the c1 direction 
and then in the 5, direction according to the following prescription. 

u,;+l = u;i+l + AC * A”[[ A”v;::: 1 * A”(u;J:l,)], W’b) 

where A’U,, = U*, - Uj-1 k ; A” Uj, = Uj, - Ujk-1 ; and C is a constant (taken 
as 4 in actual computations) while u and v’ are horizontal and vertical fluid velocity 
components. 

Equations (30a, b) are fractional steps [8] for the numerical solution of the 
diffusion equation 

ut = wA”Ml U& I u&l + (I V& I Ur,>c,l. 

From this equation it is clear that smoothing is of third order and consequently 
does not affect the truncation error of the difference scheme. 

Adding such a term to the equations of motion is similar to the von Neumann- 
Richtmyer approach used in [6] and was motivated by the higher order artificial 
viscosity of Lax and Wendroff [3]. 

In [3] Lax and Wendroff introduced a class of difference approximations to 
differential conservation laws which themselves are in discrete conservation form. 
We now describe this class and for the sake of simplicity we do it in only one space 
variable. 

Let the differential conservation law be 

U, = F, where F = F(U), 

with initial conditions U(x, 0) = 4(x). Let g be a function of 21 arguments which 
has the property that 

g(U,..., U) = F(U). (31) 

Consider the following difference approximation to the equation U, = F, : 

where 

Au/At = Ag/Ax, (32) 

and 

Av = v(x, t + At) - v(x, t), 4x, 0) = 4(x) (33) 

Ag = g(x + AX/~) - g(x - AX/~) (34) 
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with 
g(x + 42) = du+l 3 u-4+2 ,-*-3 Q>, (35) 

where the U’S are at points distributed symmetrically around x + AX/~. 
Multiply equation (32) by a smooth test vector of compact support, integrate 

with respect to x, and sum over all values of t which are integer multiples of At. 
On the left side apply summation by parts; on the right side replace the variables 
of integration by x + Ax/2 and x - Ax/2 in the two integrals which appear there. 
If g(x) is defined at nonmesh points by linear interpolation from g(x + AX/~) 
and g(x - AX/~), we obtain 

w(x, t) - w(x, t - At) 
-cl At 

v(x, t) dx At - j. w(x, 0) c#(x) dx 

=-xj 
W(X + AX/~) - “‘(X - AX/~) g(x) dx At 

Ax 

This leads to the following Lax-Wendroff theorem. 

CONSISTENCY THEOREM. Let v be the solution of the drerence equation (32) in 
conservation form with initial conditions q5 and suppose that as At, Ax -+ 0, v tends 
boundedly almost everywhere to some limit U. Then U is a solution of the differential 
conservation law and has initial values q5. 

This consistency theorem is actually central to the way that we are computing 
the shocked flow. We already know that solutions to the integral equation 

j j (Wtu - w,F)dx dt + 1 W(X, 0) d(X) dx = 0 (37) 

satisfy the differential equations, the initial conditions, and the shock conditions. 
The consistency theorem says that solutions to (32) approximate the solutions to 
(37) near the shock as well as in the smooth region. Then, to compute shocked 
flows we merely have to iterate flow quantities by using an equation of the class 
defined by (32). 

We show now that if we apply smoothing to solutions of difference equations 
in conservation form, the smoothed functions also satisfy difference equations in 
conservation form. More precisely: 

SMMOOTHING THEOREM. If a difference scheme satisfies a conservation law, and 
tfsmoothing is done by adding a term which is a first dflerence of a function S which 
has the two properties 

s = S(U-{ ) U-&l )...) ut-,) 
S(U, u )...) U) = 0, 

then the scheme with smoothing also satisfies the same conservation law. 
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The proof follows simply by constructing 

gl(x - AX/~) = N-t, u-,,, ,..., ~-1) + W-G,, ,..,, W 

and using the difference scheme: 

Av 4, 
Tt=dx 

It is clear from the definition of S that gl(U, U,..., U) = F(U), which implies 
that the consistency theorem holds for g, as well as for g. 

Such smoothing has been used by Kasahara [9] in atmospheric fluid dynamics 
problems and by Rusanov [lo] in a variety of time-dependent problems. Kasahara 
reported that he used second-order smoothing once every forty cycles to maintain 
stability instead of third-order smoothing at each step as in this report. We tried 
a calculation in which we smoothed at alternate cycles. It became unstable very 
quickly. 

In this section we have explained the reasons for using smoothing. We have 
shown that the smoothing retains all the accuracy that the original system had 
and that consistency in the sense of the integral operator is also preserved. In the 
next section the results of a machine computation at Mach 6 will be discussed. 

VI. COMPUTATION 

A. TEST CASE 

The flow chosen for a test case was one computed by Eva Swenson and reported 
by her in [4]. This flow had plane symmetry and included a detached shock whose 
shape was prescribed to be 

x = 3(1 + y2)1/2, 

where x is the distance along the axis of symmetry and y is the distance from the 
axis of symmetry. The gas was assumed to be perfect with gamma = 1.4. The 
Mach number at cc was 6. This inverse problem was solved to five figures of 
accuracy by Garabadian’s method of characteristics in complex space [7], and 
furnished the body used in our calculation.2 

B. INITIAL FLOW 

Our time-dependent method requires initial values of the flow quantities at 
interior points as well as at the body points. The choice of this initial flow is to 

2 Since the position of the body was not known at precisely the points needed by our finite 
difference method, we used quadratic interpolation to obtain the needed values. 
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a certain extent arbitrary. Presumably, the flow will eventually settle down to the 
correct steady state no matter what data one starts with. Of course, the closer 
our initial guess comes to representing the stationary flow, the faster it will converge 
to a steady state. In our calculation the initial data at the body were the results 
computed by Swenson; those at the upstream boundary were assigned the 
data at co. The initial flow quantities at all other points were arbitrarily set to be 
linear functions of 5, and had the above data at the body and at the left 
boundary. 

It was noticed that with initial data in which the pressure and density at the 
body were set equal to their values at co, the calculational scheme became unstable 
after a few cycles. A possible explanation for this instability is that these initial 
values are too far from the steady-state solution and initially give rise to too 
violent a flow. A way out of the difficulty was to iterate a number of cycles by 
using only the first step of the two-step method. This procedure is known to be 
stable. These numerical results indicate that if fluxes are too large, the two-step 
method is unstable. This is an instance of nonlinear instability, because for linear 
systems, stability is not influenced by the size of the initial data. At present, 
I know of no explanation for this instability nor for the subsequent stability of 
the scheme when applied to the more accurate data. 

The usual stability analysis based on von Neumann criteria is not applicable 
here because in that theory one has to assume that flow quantities at neighboring 
lattice points differ by O(h), whereas in our calculation this instability occurred 
in the shock region where the flow quantities vary rapidly. 

C. VERIFICATIONS 

In this section we compare the results of our calculation with the exact steady 
state known from Swenson’s work. We also present various flow quantities as 
functions of time. 

1. Bernoulli Steady-State Constant 

In [l, p. 3001 it is proved that for a steady flow the quantity 

B = (u” + 9)/2 + l/(y - 1) ’ c2 

is a constant along every streamline even when the streamline crosses a shock. 
Since each streamline comes from upstream, B is a constant throughout. The initial 
average of B is 29.04. The final average of B is 28.59. The correct upstream value 
is 28.700. The average of B as a function of cycle number is plotted in Fig. 6. 
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FIG. 6. Computed values of B vs cycle number. 

2. Stagnation Point Pressure 

Figure 7 illustrates the pressure at the stagnation point as a function of cycle 
number. The pressure at cycle number 0 is the steady-state theoretical pressure p* 
consistent with the parameters of the problem. The graph shows that the pressure, 
which starts out at p*, drops very rapidly, then turns around, overshoots p*, and 
finally approaches it asymptotically. 
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FIG. 7. Pressure at stagnation point vs cycle number. 

3. Standof Distance of the Shock as a Function of Time 

The equations of motion assume that the gas appearing in the computation is 
a “gamma law” gas, that is, that 

P = APY, 
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where A is a function of entropy S alone. Specifically [I, p. lo], 

A = ke@ (= 1 upstream), 
where k and g are positive constants. Thus A is a monotonic increasing function 
of S and can be used as a measure of the entropy jump across the shock. A simple 
method for determining the position of the shock would be to march from in 
front of the shock (the constant region) along a horizontal line until a point is 
reached at which A is greater than 1 and to assign the position of the shock to 
that point. Unfortunately, due to oscillation of the flow quantities, the quantity A 
oscillates below 1, then above; then sometimes the cycle repeats. Because of these 
irregularities, the position of the shock is taken to be halfway between the last point 
of an unbroken sequence of points at which A = 1 and the first point of an 
unbroken sequence of points with A > 1. The position of the shock on the line 
of symmetry is graphed in Fig. 8 according to this method, along with its theoretical 
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FIG. 8. Position of vertex of shock vs cycle number. 
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position in units of mesh points from the body. The position of the shock starts 
at 60.5, then it moves lower, and finally returns to a position around 39.5. The 
true position is 35 in these units. The body is at 0. 

4. Pressure Projile on the Body 

In Fig. 9, the pressure profile along the body is illustrated at three different 
times and the pressure curve obtained by interpolation from [4] is plotted on 
the same graph. As can be seen there, the pressure profile on the body at 100 cycles 
moves far below its exact position, then at 300 cycles far above, and then comes 
much closer to theoretical results at 1000 cycles. The pressure near the nose of 
the body (lower point number) is relatively more accurate than it is downstream. 
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FIG. 9. Pressure vs Y along body. (-. -) Computed at 300 cycles; (-) exact; (-- -) 
computed at 1000 cycles. 
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5. Final Shape of the Shock 

with its exact position and the position of the shock obtained by using a 
difference analogue of Eq. (29). It is clear that the conservation analogue 
much better results than Eq. (29), especially near the upper boundary. 

In Fig. 10, the position of the shock at 1000 cycles is illustrated and compared 
finite 
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FIG. 10. Position of shock at 1000 cycles. 
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